当前位置:首页 » 课程设计 » 数据挖掘课程理念

数据挖掘课程理念

发布时间: 2021-03-12 06:04:38

① 如何学习数据分析

首先我说说这两种方向共同需要的技术面,当然以下只是按照数据分析入门的标准来写:

1. SQL(数据库),我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能,零基础学习SQL可以阅读这里:SQL教程_w3cschool

2. 统计学基础,数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等,这些在网易公开课上倒是有不错的教程:哈里斯堡社区大学公开课:统计学入门_全24集_网易公开课
3.Python或者R的基础,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。至于学习资料:R语言我不太清楚,Python方向可以在廖雪峰廖老师的博客里看Python教程,面向零基础。
再说说两者有区别的技能树:

1.数据挖掘向
我先打个前哨,想要在一两个月内快速成为数据挖掘向的数据分析师基本不可能,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少,而这些不是你自习一两个月就能完全掌握的。
所以想做数据挖掘方向的,一定要花时间把软件工程专业学习的计算机基础课程看完,这些课程包括:数据结构、算法,可以在这里一探究竟:如何学习数据结构?
在此之后你可以动手用Python去尝试实现数据挖掘的十八大算法:数据挖掘18大算法实现以及其他相关经典DM算法
2.产品经理向
产品经理向需要你对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。这方面的学习书籍就很多,看得越多掌握的方法越多,我说几本我看过的或者很多人推荐的书籍:《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》

② 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

参考资料来源:

网络—数学分析

网络—高等代数

网络—复变函数论

网络—抽象代数

网络—近世代数

③ 如何自学成为数据分析师

数据分析师的基本工作流程:

1.定义问题

确定需要的问题,以及想得出的结论。需要考虑的选项有很多,要根据所在业务去判断。常见的有:变化趋势、用户画像、影响因素、历史数据等。

2.数据获取

数据获取的方式有很多种:

一是直接从企业数据库调取,需要SQL技能去完成数据提取等的数据库管理工作。

二是获取公开数据,政府、企业、统计局等机构有。

三是通过Python编写网页爬虫。

3.数据预处理

对残缺、重复等异常数据进行清洗。

4.数据分析与建模

这个部分需要了解基本的统计分析方法、数据挖掘算法,了解不同统计方法适用的场景和适合的问题。

5.数据可视化和分析报告撰写

学习一款可视化工具,将数据通过可视化最直观的展现出来。

数据分析入门需要掌握的技能有:

1. SQL(数据库):

怎么从数据库取数据?怎么取到自己想要的特定的数据?等这些问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。

2. excel

分析师更多的时候是在分析数据,分析数据时需要把数据放到一个文件里,就是excel。

熟练excel常用公式,学会做数据透视表,什么数据画什么图等。

3.Python或者R的基础:

必备项,也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。

4.学习一个可视化工具

如果你想往更高层次发展,上面的东西顶多只占20%,剩下的80%则是业务理解能力,目标拆解能力,根据数据需求更多新技能的学习能力。

④ 计算机专业研究生阶段有几大研究方向可以选择

1、计算机应用技术
研究方向:计算机网络、实时计算机应用、CIMS、计算机图形学、并行计算、网络信息安全、数据库、情感计算、数据挖掘、分布式计算、知识工程、计算机视觉、自动推理、机器学习、草图理解、网络性能分析与协议设计、网络管理与安全、计算机图形学、信息可视化、基于GPU的高性能计算、复杂系统(应急、物流、海洋)领域工程、基于SOA的空间信息共享与业务协同、语义搜索引擎、自然语言处理、机器翻译、搜索引擎、空中交通信息系统与控制、民航信息与决策支持系统、智能交通系统理论与技术等。
专业特点:计算机应用技术是针对社会与各种企事业单位的信息化需求,通过对计算机软硬件与网络技术的选择、应用和集成,对信息系统进行需求分析、规划和设计,提供与实施技术与解决方案,创建优化的信息系统,并对其运行实行有效的技术维护和管理的学科。
培养这方面人才所涉及的知识面包括:数学与信息技术基础、程序设计基础、系统平台技术、计算机网络、信息管理与安全、人机交互、集成程序开发、系统架构与集成、Web与数字媒体技术、工程实施、职业操守等。培养目标是为企事业单位和政府机构提供首席信息官及承担信息化建设核心任务的人才,并提供为IT企业提供系统分析人才。
科研状况:本专业是天津市第一个计算机类博士点,主要从事计算机技术在其它领域应用中核心技术问题研究及相关信息系统开发。近年来在计算机集成制造(CIMS)、计算机辅助教学、虚拟现实技术应用、计算机工业控制、电子商务等方向承担国家863项目及重大项目、国家自然科学基金十余项。承担省部级及横向科研课题近百项。为国家和天津市的信息化建设做出了重要贡献。
近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生300多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:高等计算机网络、计算理论、排队论及在计算机中的应用、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。
论文要求:论文选题涉及计算机在各领域应用的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。 就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机应用领域的理论和工程方法,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
2、计算机软件与理论
研究方向:计算理论、算法理论; 软件工程、中间件、智能软件、计算环境;并行计算、网格计算、普及计算;密码学、信息安全、数据理论;图形图象算法、可视化方法;人工智能应用基础;理论计算机科学其他方向。
专业特点:计算机软件与理论专业涉及计算机科学与技术的基本理论和方法,强调计算、算法、软件、设计等概念,主要的领域包括计算理论、算法与复杂性、程序设计语言、软件设计与理论、数据库系统、人工智能、操作系统与编译理论、信息安全理论与方法、图形学与可视化计算、以网络为中心的计算等。
科研状况:计算机软件与理论专业是我院重点发展,进步较快的专业。近年来承担国家863、自然科学基金、,以及省部级项目多项。在网络信息安全、中间件技术、并行计算、网格计算、计算机图形学等方面取得了多项前沿性成果。 近几年报考简况:本专业从96年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:计算理论、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。 论文要求:论文选题涉及计算机软件的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。
就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机软件的理论方法,以及软件工程、信息系统、并行计算、普及计算等等的软件系统开发技术,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
3、计算机系统结构
研究方向:分布式计算机系统、计算机网络系统与全球个人计算系统、真实感图形生成与虚拟现实技术
专业特点:计算机系统结构(原名计算机组织与系统结构)专业全面研究各种类型的计算机系统(从单机到网络)的构成、硬件与软件的联系与功能匹配、计算机系统性能评价与改进等。该专业的研究课题涉及高性能处理机系统结构、多机系统、并行计算与分布式计算系统、计算机系统性能评价、VLSL设计、容错计算技术、计算机接口技术、计算机网络系统与通信系统、移动计算、全球个人计算系统等。
科研状况:本专业近年来承担多项国家科委、国家教委、国家计委及天津市自然科学基金项目,并有多项科研获奖。其中G.T9112计算机解密系统获北京市公安局科技进步二等奖,表面高度复杂实体的CAM获国家科委科技进步二等奖。目前承担国家自然科学基金项目“面向ASIC的真实感图形算法和系统结构的研究”、国家高科技863项目“用于建筑环境仿真设计的分布式多用户虚拟现实系统”、天津自然科学基金项目“分布式多用户VR开发系统平台的研究”和一大批为企事业单位开发的横向科研项目。
近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:应用数学、外语、高等计算机网络、排队论及在计算机中的应用、计算理论、现代计算机体系结构、计算机综合实验、计算机控制及应用、计算机网络研究热点问题、计算机系统仿真、量子计算、密码学与信息安全、面向对象方法学、嵌入式系统设计、统一建模语言、图象/模式识别与理解、机器学习、软件体系结构。
论文要求:论文选题涉及计算机系统结构的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。
就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机系统结构、计算机工程、网络工程、嵌入式系统等的应用开发技术、能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
计算机系统结构 02 网络与信息安全
04 计算机通信,信息安全,多媒体信号处理 05 图形图像处理技术
07 计算机图形图像处理技术、嵌入式系统 09 计算机网络与图形图像处理 10 计算机网络与信息处理
11 输入输出技术与设备、图像处理与图像理解 12 信息安全理论与技术,嵌入式系统 13 网络安全
14 信息安全与编码
15 网络安全和网络计算 16 图形图像和外设
17 计算机输入输出技术与设备、图形图像处理与理解 考试科目:
①101政治理论②201英语③301数学(一)④431计算机基础(计算机基础包含离散数学45分;数据结构45分;计算机组成原理60分) 计算机软件与理论 02 面向对象技术
04 软件安全与编译器体系结构 06 分布计算与互联网技术
08 并行与分布计算,生物信息学算法 09 软件工程、信息系统 10 软件理论与应用
11 高可信软件技术、互联网计算与互联网软件、可编程芯片支持软件和嵌入式系统
12 软件测试与自演化技术 14 程序理解、软件再工程
15 计算智能的理论、方法与应用
16 高可信软件技术、互联网计算与互联网软件、可编程芯片支持软件和嵌入式系统

⑤ 计算机科学与技术专业都有什么课程

1、公共课程:数学(高等数学、线性代数、概率论与数理统计)、政治(马专克思主义思想概论、属毛泽东思想概论与中国特色社会主义思想、思想道德修养与法律基础、中国近现代史纲要)、大学英语、体育。

2、专业基础课程:电路原理、模拟电子技术、数字逻辑、数值分析、微型计算机技术、计算机系统结构、高级语言、汇编语言、编译原理、图形学、人工智能、计算方法、人机交互、面向对象方法、计算机英语等。

3、专业方向课程:离散数学、算法与数据结构、计算机组成原理、计算机操作系统、计算机网络基础、计算机编译原理、计算机数据库原理、C语言/c++语言、Java语言等。

(5)数据挖掘课程理念扩展阅读

知识能力

1、具备扎实的数据基础理论和基础知识;

2、具有较强的思维能力、算法设计与分析能力;

3、系统掌握计算机科学与技术专业基本理论、基本知识和操作技能;

4、了解学科的知识结构、典型技术、核心概念和基本工作流程;

5、有较强的计算机系统的认知、分析、设计、编程和应用能力;

6、掌握文献检索、资料查询的基本方法、能够独立获取相关的知识和信息,具有较强的创新意识;

7、熟练掌握一门外语,能够熟读该专业外文书刊。

⑥ 自学人工智能需要学那些专业知识

一、人工智能是一个综合学科,如楼上所说。而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++ MATLAB应该多学习点。对于你想买什么书学习。我只能对我看过的书给你介绍一下,你再自己酌量一下。

1.人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了。第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。

2.机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。

3.机器人方面:新版《机器人技术手册》日译的书,可能这是我当初在当当网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。

二、学习人工智能AI需要下列最基础的知识:

1.需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

2.需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

3.需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。

⑦ 计算机考研哪个研究方向偏向于互联网

1、计算机应用技术
研究方向:计算机网络、实时计算机应用、CIMS、计算机图形学、并行计算、网络信息安全、数据库、情感计算、数据挖掘、分布式计算、知识工程、计算机视觉、自动推理、机器学习、草图理解、网络性能分析与协议设计、网络管理与安全、计算机图形学、信息可视化、基于GPU的高性能计算、复杂系统(应急、物流、海洋)领域工程、基于SOA的空间信息共享与业务协同、语义搜索引擎、自然语言处理、机器翻译、搜索引擎、空中交通信息系统与控制、民航信息与决策支持系统、智能交通系统理论与技术等。
专业特点:计算机应用技术是针对社会与各种企事业单位的信息化需求,通过对计算机软硬件与网络技术的选择、应用和集成,对信息系统进行需求分析、规划和设计,提供与实施技术与解决方案,创建优化的信息系统,并对其运行实行有效的技术维护和管理的学科。
培养这方面人才所涉及的知识面包括:数学与信息技术基础、程序设计基础、系统平台技术、计算机网络、信息管理与安全、人机交互、集成程序开发、系统架构与集成、Web与数字媒体技术、工程实施、职业操守等。培养目标是为企事业单位和政府机构提供首席信息官及承担信息化建设核心任务的人才,并提供为IT企业提供系统分析人才。
科研状况:本专业是天津市第一个计算机类博士点,主要从事计算机技术在其它领域应用中核心技术问题研究及相关信息系统开发。近年来在计算机集成制造(CIMS)、计算机辅助教学、虚拟现实技术应用、计算机工业控制、电子商务等方向承担国家863项目及重大项目、国家自然科学基金十余项。承担省部级及横向科研课题近百项。为国家和天津市的信息化建设做出了重要贡献。
近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生300多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:高等计算机网络、计算理论、排队论及在计算机中的应用、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。
论文要求:论文选题涉及计算机在各领域应用的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。 就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机应用领域的理论和工程方法,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
2、计算机软件与理论
研究方向:计算理论、算法理论; 软件工程、中间件、智能软件、计算环境;并行计算、网格计算、普及计算;密码学、信息安全、数据理论;图形图象算法、可视化方法;人工智能应用基础;理论计算机科学其他方向。
专业特点:计算机软件与理论专业涉及计算机科学与技术的基本理论和方法,强调计算、算法、软件、设计等概念,主要的领域包括计算理论、算法与复杂性、程序设计语言、软件设计与理论、数据库系统、人工智能、操作系统与编译理论、信息安全理论与方法、图形学与可视化计算、以网络为中心的计算等。
科研状况:计算机软件与理论专业是我院重点发展,进步较快的专业。近年来承担国家863、自然科学基金、,以及省部级项目多项。在网络信息安全、中间件技术、并行计算、网格计算、计算机图形学等方面取得了多项前沿性成果。 近几年报考简况:本专业从96年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:计算理论、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。 论文要求:论文选题涉及计算机软件的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。
就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机软件的理论方法,以及软件工程、信息系统、并行计算、普及计算等等的软件系统开发技术,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
3、计算机系统结构
研究方向:分布式计算机系统、计算机网络系统与全球个人计算系统、真实感图形生成与虚拟现实技术
专业特点:计算机系统结构(原名计算机组织与系统结构)专业全面研究各种类型的计算机系统(从单机到网络)的构成、硬件与软件的联系与功能匹配、计算机系统性能评价与改进等。该专业的研究课题涉及高性能处理机系统结构、多机系统、并行计算与分布式计算系统、计算机系统性能评价、VLSL设计、容错计算技术、计算机接口技术、计算机网络系统与通信系统、移动计算、全球个人计算系统等。
科研状况:本专业近年来承担多项国家科委、国家教委、国家计委及天津市自然科学基金项目,并有多项科研获奖。其中G.T9112计算机解密系统获北京市公安局科技进步二等奖,表面高度复杂实体的CAM获国家科委科技进步二等奖。目前承担国家自然科学基金项目“面向ASIC的真实感图形算法和系统结构的研究”、国家高科技863项目“用于建筑环境仿真设计的分布式多用户虚拟现实系统”、天津自然科学基金项目“分布式多用户VR开发系统平台的研究”和一大批为企事业单位开发的横向科研项目。
近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:应用数学、外语、高等计算机网络、排队论及在计算机中的应用、计算理论、现代计算机体系结构、计算机综合实验、计算机控制及应用、计算机网络研究热点问题、计算机系统仿真、量子计算、密码学与信息安全、面向对象方法学、嵌入式系统设计、统一建模语言、图
象/模式识别与理解、机器学习、软件体系结构。
论文要求:论文选题涉及计算机系统结构的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。
就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机系统结构、计算机工程、网络工程、嵌入式系统等的应用开发技术、能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
计算机系统结构 02 网络与信息安全
04 计算机通信,信息安全,多媒体信号处理 05 图形图像处理技术
07 计算机图形图像处理技术、嵌入式系统 09 计算机网络与图形图像处理 10 计算机网络与信息处理
11 输入输出技术与设备、图像处理与图像理解 12 信息安全理论与技术,嵌入式系统 13 网络安全
14 信息安全与编码
15 网络安全和网络计算 16 图形图像和外设
17 计算机输入输出技术与设备、图形图像处理与理解 考试科目:
①101政治理论②201英语③301数学(一)④431计算机基础(计算机基础包含离散数学45分;数据结构45分;计算机组成原理60分) 计算机软件与理论 02 面向对象技术
04 软件安全与编译器体系结构 06 分布计算与互联网技术
08 并行与分布计算,生物信息学算法 09 软件工程、信息系统 10 软件理论与应用
11 高可信软件技术、互联网计算与互联网软件、可编程芯片支持软件和嵌入式系统
12 软件测试与自演化技术 14 程序理解、软件再工程
15 计算智能的理论、方法与应用
16 高可信软件技术、互联网计算与互联网软件、可编程芯片支持软件和嵌入式系统

⑧ python 人工智能 入门要看那些理论书

深度学习其实就是搞数理研究,数学不好不要钻这个了,先学好数学再说。
1. 吴恩达“机器学习”公开课,授课机构:斯坦福大学,发布平台:Coursera。
2. 加州理工 “从数据中学习”,课程名称:Learning from Data,网易公开课译名为“加州理工学院公开课:机器学习与数据挖掘”,主讲人:Yaser Abu-Mostafa,授课机构:加州理工学院,发布平台:edX(原版),网易公开课。
3. Tom Mitchell 机器学习课程,课程名称:机器学习 Machine Learning,主讲人:Tom Mitchell,授课机构:卡内基梅隆大学(CMU),发布平台:CMU 官网。
4. 台大林轩田老师的机器学习基石,课程名称:机器学习基石,主讲人:林轩田,授课机构:台湾大学,发布平台:Coursera。这是汉语授课哦。
5. 谷歌人工智能入门,课程名称:人工智能入门 Intro to Artificial Intelligence,主讲人:Peter Norvig,Sebastian Thrun,授课机构:谷歌,发布平台:优达学城 Udacity。
6. UBC 本科生的机器学习课程,课程名称:面向本科生的机器学习课 Machine Learning for Undergraates,主讲人: Nando de Freitas,授课机构:英属哥伦比亚大学(UBC)。
7. Yann Lecun 深度学习公开课,课程名称:深度学习 Deep Learning,主讲人:Yann Lecun,授课机构:法兰西学院,发布平台:法兰西学院官网。
8. Geoffrey Hinton 深度学习课程,课程名称:神经网络用于机器学习 Neural Networks For Machine Learning;网易译名“神经网络的机器学习”,主讲人:Geoffrey Hinton,授课机构:多伦多大学。发布平台:Coursera、网易公开课。
9. 哥伦比亚大学的机器学习公开课,课程名称:机器学习 Machine Learning,主讲人:John W. Paisley,授课机构:哥伦比亚大学,发布平台:edX
10. MIT 进阶课程,课程名称:机器学习 Machine Learning,主讲人:Tommi Jaakkola,授课机构:麻省理工学院(MIT),发布平台:MIT Opencourseware,语言:英语。

以上就是全球最热闹的机器学习公开课了,全部可以免费获取。

⑨ 想成为数据分析师学习流程是怎样的

第1本《谁说菜鸟不会数据分析入门篇》

很有趣的数据分析书!基本看过就能明白,以小说的形式讲解,很有代入感。包含了数据分析的结构化思维、数据处理技巧、数据展现的技术,很能帮我们提升职场竞争能力。找不到工作的,学好了它,自然没问题。

第2本《拯救你的Excel数据的分析、处理、展示(动画版)》

一本用手机看的Excel操作书,大部分例子都配置了二维码,手机扫扫就能看,基本上可以躺着把书学了。所有数据的分析、处理也都带了职场范例(有会计、HR、销售场景),很贴合实际。拯救我们小白的Excel,职场加薪不是梦想!

第3本《Excel图表之道:如何制作专业有效的商务图表》

职场大牛的书,教我们做图表的,好看到不能再好看。可以设计和制作达到杂志级质量的、专业有效的商务图表。相信平时我们很难做到吧,看了你就知道,也许一切没那么难。

第4本《绝了!Excel可以这样用:数据分析经典案例实战图表书》

挺好的一个系列,都是Excle常用的技巧,适合销售和HR。也是职场故事,很接地气,带视频的,全都是Excel数据分析的常用理念和方法。

第5本《深入浅出数据分析》

深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。

第6本《MySQL必知必会》

如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的。

第7本《深入浅出统计学》

大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。

第8本《网站分析实战》

互联网不再是网站的天下,但是移动端依旧有Web,我们在朋友圈看到的所有H5活动、第三方内容等,都是依托网页实现。网站的数据分析依旧有存在空间,网站的数据指标还是能够指导我们运营!

第9本《深入浅出Python》

还是深入浅出系列,完全适合零基础的新人。需要注意的是,编程学习不同于其他知识,如果计算机基础不稳固,在使用中会遇到各类问题。知其然不知其所以然!

第10本《Python学习手册》

对于拥有编程基础的人,这本书系无巨细的有些啰嗦,不过对新人,可以避免不必要的坑。把它当作一本工具文档吧,当遇到不理解的内容随时翻阅。

第11本《利用Python进行数据分析》

这本书是你学习python不二之选,对着书,着重学习numpy,pandas两个包!每段代码都敲打一遍,千万行的数据清洗基本不会有大问题了。

第12本《R语言实战》

R语言的入门书籍,从数据读取到各类统计函数的使用。虽然没有涉及机器学习,依靠这本书入门R是绰绰有余了。

第13本《统计学:从数据到结论》

这本书是将R语言和统计学结合的教材,可以利用这本书再复习一遍统计知识。

第14本《深入浅出SQL》

带你进入SQL语言的心脏地带,从使用INSERT和SELECT这些基本的查询语法到使用子查询(subquery)、连接(join)和事务(transaction)这样的核心技术来操作数据库。到读完《深入浅出SQL》之时,你将不仅能够理解高效数据库设计和创建,还能像一个专家那样查询、归一(normalizing)和联接数据。你将成为数据的真正主人。

第15本《数据挖掘导论》

这本书绝对是一本良心教材,拿到手从第一章开始阅读,能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~

第16本《算法导论中文版》

本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。

上面的书籍都是PDF版

视频教材的有:

Python入门教程完整版(懂中文就能学会)资料

Python入门教程完整版(懂中文就能学会)视频

Mysql从入门到精通全套视频教程

8天深入理解python教程

大数据Hadoop视频教程,从入门到精通

Python就业班

Python标准库(中文版)

数学建模0基础从入门到精通,全套资源

0基础Python实战-四周实现爬虫系统

麦子学院招牌课程[明星python编程视频VIP教程][200G](价值9000元)

从零基础到数据分析师,帮你拿到年薪50万!

炜心:xccx158

⑩ 关于计算机专业研究生研究方向

1、计算机应用技术
研究方向:计算机网络、实时计算机应用、CIMS、计算机图形学、并行计算、网络信息安全、数据库、情感计算、数据挖掘、分布式计算、知识工程、计算机视觉、自动推理、机器学习、草图理解、网络性能分析与协议设计、网络管理与安全、计算机图形学、信息可视化、基于GPU的高性能计算、复杂系统(应急、物流、海洋)领域工程、基于SOA的空间信息共享与业务协同、语义搜索引擎、自然语言处理、机器翻译、搜索引擎、空中交通信息系统与控制、民航信息与决策支持系统、智能交通系统理论与技术等。
专业特点:计算机应用技术是针对社会与各种企事业单位的信息化需求,通过对计算机软硬件与网络技术的选择、应用和集成,对信息系统进行需求分析、规划和设计,提供与实施技术与解决方案,创建优化的信息系统,并对其运行实行有效的技术维护和管理的学科。
培养这方面人才所涉及的知识面包括:数学与信息技术基础、程序设计基础、系统平台技术、计算机网络、信息管理与安全、人机交互、集成程序开发、系统架构与集成、Web与数字媒体技术、工程实施、职业操守等。培养目标是为企事业单位和政府机构提供首席信息官及承担信息化建设核心任务的人才,并提供为IT企业提供系统分析人才。
科研状况:本专业是天津市第一个计算机类博士点,主要从事计算机技术在其它领域应用中核心技术问题研究及相关信息系统开发。近年来在计算机集成制造(CIMS)、计算机辅助教学、虚拟现实技术应用、计算机工业控制、电子商务等方向承担国家863项目及重大项目、国家自然科学基金十余项。承担省部级及横向科研课题近百项。为国家和天津市的信息化建设做出了重要贡献。
近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生300多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:高等计算机网络、计算理论、排队论及在计算机中的应用、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。
论文要求:论文选题涉及计算机在各领域应用的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。

就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机应用领域的理论和工程方法,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
2、计算机软件与理论
研究方向:计算理论、算法理论; 软件工程、中间件、智能软件、计算环境;并行计算、网格计算、普及计算;密码学、信息安全、数据理论;图形图象算法、可视化方法;人工智能应用基础;理论计算机科学其他方向。
专业特点:计算机软件与理论专业涉及计算机科学与技术的基本理论和方法,强调计算、算法、软件、设计等概念,主要的领域包括计算理论、算法与复杂性、程序设计语言、软件设计与理论、数据库系统、人工智能、操作系统与编译理论、信息安全理论与方法、图形学与可视化计算、以网络为中心的计算等。
科研状况:计算机软件与理论专业是我院重点发展,进步较快的专业。近年来承担国家863、自然科学基金、,以及省部级项目多项。在网络信息安全、中间件技术、并行计算、网格计算、计算机图形学等方面取得了多项前沿性成果。
近几年报考简况:本专业从96年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:计算理论、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。

论文要求:论文选题涉及计算机软件的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。
就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机软件的理论方法,以及软件工程、信息系统、并行计算、普及计算等等的软件系统开发技术,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
3、计算机系统结构
研究方向:分布式计算机系统、计算机网络系统与全球个人计算系统、真实感图形生成与虚拟现实技术
专业特点:计算机系统结构(原名计算机组织与系统结构)专业全面研究各种类型的计算机系统(从单机到网络)的构成、硬件与软件的联系与功能匹配、计算机系统性能评价与改进等。该专业的研究课题涉及高性能处理机系统结构、多机系统、并行计算与分布式计算系统、计算机系统性能评价、VLSL设计、容错计算技术、计算机接口技术、计算机网络系统与通信系统、移动计算、全球个人计算系统等。
科研状况:本专业近年来承担多项国家科委、国家教委、国家计委及天津市自然科学基金项目,并有多项科研获奖。其中G.T9112计算机解密系统获北京市公安局科技进步二等奖,表面高度复杂实体的CAM获国家科委科技进步二等奖。目前承担国家自然科学基金项目“面向ASIC的真实感图形算法和系统结构的研究”、国家高科技863项目“用于建筑环境仿真设计的分布式多用户虚拟现实系统”、天津自然科学基金项目“分布式多用户VR开发系统平台的研究”和一大批为企事业单位开发的横向科研项目。
近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。
硕士期间主要课程及论文要求:主要课程:应用数学、外语、高等计算机网络、排队论及在计算机中的应用、计算理论、现代计算机体系结构、计算机综合实验、计算机控制及应用、计算机网络研究热点问题、计算机系统仿真、量子计算、密码学与信息安全、面向对象方法学、嵌入式系统设计、统一建模语言、图象/模式识别与理解、机器学习、软件体系结构。
论文要求:论文选题涉及计算机系统结构的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。
就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机系统结构、计算机工程、网络工程、嵌入式系统等的应用开发技术、能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。
计算机系统结构 02 网络与信息安全
04 计算机通信,信息安全,多媒体信号处理 05 图形图像处理技术
07 计算机图形图像处理技术、嵌入式系统 09 计算机网络与图形图像处理 10 计算机网络与信息处理
11 输入输出技术与设备、图像处理与图像理解 12 信息安全理论与技术,嵌入式系统 13 网络安全
14 信息安全与编码
15 网络安全和网络计算 16 图形图像和外设
17 计算机输入输出技术与设备、图形图像处理与理解 考试科目:
①101政治理论②201英语③301数学(一)④431计算机基础(计算机基础包含离散数学45分;数据结构45分;计算机组成原理60分) 计算机软件与理论 02 面向对象技术
04 软件安全与编译器体系结构 06 分布计算与互联网技术
08 并行与分布计算,生物信息学算法 09 软件工程、信息系统 10 软件理论与应用
11 高可信软件技术、互联网计算与互联网软件、可编程芯片支持软件和嵌入式系统
12 软件测试与自演化技术 14 程序理解、软件再工程
15 计算智能的理论、方法与应用
16 高可信软件技术、互联网计算与互联网软件、可编程芯片支持软件和嵌入式系统

热点内容
幼师专业怎么样 发布:2021-03-16 21:42:13 浏览:24
音乐小毛驴故事 发布:2021-03-16 21:40:57 浏览:196
昂立中学生教育闸北 发布:2021-03-16 21:40:47 浏览:568
建筑业一建报考条件 发布:2021-03-16 21:39:53 浏览:666
2017年教师资格注册结果 发布:2021-03-16 21:39:49 浏览:642
中国教师资格证查分 发布:2021-03-16 21:39:41 浏览:133
踵什么成语有哪些 发布:2021-03-16 21:38:20 浏览:962
东营幼师专业学校 发布:2021-03-16 21:35:26 浏览:467
机械电子研究生课程 发布:2021-03-16 21:33:36 浏览:875
杭州朝日教育培训中心怎么样 发布:2021-03-16 21:33:28 浏览:238